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Abstract Many researchers seek to take advantage of the recently available and virtually
uninterrupted supply of satellite-based rainfall information as an alternative and supple-
ment to the ground-based observations in order to implement a cost-effective flood
prediction in many under-gauged regions around the world. Recently, NASA Applied
Science Program has partnered with USAID and African-RCMRD to implement an
operational water-hazard warning system, SERVIR-Africa. The ultimate goal of the project
is to build up disaster management capacity in East Africa by providing local governmental
officials and international aid organizations a practical decision-support tool in order to
better assess emerging flood impacts and to quantify spatial extent of flood risk, as well as
to respond to such flood emergencies more expediently. The objective of this article is to
evaluate the applicability of integrating NASA’s standard satellite precipitation product
with a flood prediction model for disaster management in Nzoia, sub-basin of Lake Vic-
toria, Africa. This research first evaluated the TMPA real-time rainfall data against gauged
rainfall data from the year 2002 through 2006. Then, the gridded Xinanjiang Model was
calibrated to Nzoia basin for period of 1985–2006. Benchmark streamflow simulations
were produced with the calibrated hydrological model using the rain gauge and observed
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streamflow data. Afterward, continuous discharge predictions forced by TMPA 3B42RT
real-time data from 2002 through 2006 were simulated, and acceptable results were
obtained in comparison with the benchmark performance according to the designated
statistic indices such as bias ratio (20%) and NSCE (0.67). Moreover, it is identified that
the flood prediction results were improved with systematically bias-corrected TMPA
rainfall data with less bias (3.6%) and higher NSCE (0.71). Although the results justify to
suggest to us that TMPA real-time data can be acceptably used to drive hydrological
models for flood prediction purpose in Nzoia basin, continuous progress in space-borne
rainfall estimation technology toward higher accuracy and higher spatial resolution is
highly appreciated. Finally, it is also highly recommended that to increase flood forecasting
lead time, more reliable and more accurate short- or medium-range quantitative precipi-
tation forecasts is a must.

Keywords Flood prediction ! Remote sensing precipitation ! TRMM !
Capacity building

1 Introduction

Precipitation-triggered floods are among the most devastating natural hazards and one of
the most prevalent hydro-meteorological disasters in the world. With the increase in
precipitation intensity, flood magnitude and frequency may increase in flood-prone regions
of the world (IPCC 2007; http://www.ipcc.ch/). In addition to other factors, ever increasing
settlements in vulnerable areas with increasing population and resource utilization will
certainly increase the risks of floods in the near future. Such threat is going to affect the
vulnerable nations the most. However, advances in flood monitoring/forecasting have been
constrained by the difficulty in precisely estimating precipitation, the key forcing factor,
over a range of spatial scales (point-, basin-, region-, or even global) and continuously over
the time (daily to sub-daily). The recently available and virtually uninterrupted supply of
satellite-based rainfall estimates is increasingly becoming a cost-effective source of data
for flood prediction in many under-gauged regions around the world. The National
Aeronautics and Space Administration (NASA) pioneered the development of a near-
real-time global flood forecasting system for early warning, the NASA Goddard Space
Flight Center (GSFC) internet-based Global Flood Monitoring (Hong et al. 2007a, b)
system initially used by the Regional Visualization and Monitoring System (SERVIR) for
Mesoamerica (www.servir.net). After the successful launch and operation of the SERVIR-
Mesoamerica, the NASA Applied Science program has again partnered with the United
States Agency for International Development (USAID) and The Africa Regional Centre for
Mapping of Resources for Development (RCMRD) to implement an operational flood
warning system as part of the SERVIR-Africa project. The project seeks to take advantage
of spatially continuous remote sensing information as an alternative and supplement to
ground-based observation in order to provide better information about the spatial extent of
flood hazards.

The objective of this research is to evaluate the applicability of integrating NASA’s
standard precipitation product, TRMM-based Multi-satellite Precipitation Analysis 3B42
Real-Time (TMPA 3B42RT) rainfall data, with a flood prediction system for disaster
management in Nzoia, sub-basin of Lake Victoria, Africa. The key datasets enabling the
development of a distributed hydrological model in Africa include TMPA 3B42RT Real-
time rainfall estimates, the digital elevation data from the NASA Shuttle Radar
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Topography Mission (SRTM), hydrological parameter files from Hydrological data and
maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS), the
Moderate Resolution Imaging Spectroradiometer (MODIS) land cover, and soil parameters
provided by Food & Agricultural Organization (FAO).

The remaining part of this article is organized as follows: Sect. 2 describes the study
area, data, and the flood prediction model, Sect. 3 evaluates the TMPA 3B42RT data from
2001 to 2006 at different spatial and temporal scales, Sect. 4 compares the performance of
the flood prediction model at calibration and verification period with ground-based
observations of streamflow, and Sect. 5 presents conclusions.

2 Study area, data, and hydrological model

2.1 Nzoia River basin

In general, repeated flooding is a serious problem in East Africa, particularly in the Lake
Victoria Basin, which affects the lives of 30 million people of that region (Osano et al.
2003). The region around Lake Victoria is prone to flooding because of heavy rains and
overflowing of the tributary rivers and streams. People in the heavily populated regions of
Kenya, Uganda, and Tanzania live their life under a constant threat of flooding every year.
In late May of 2002 alone, widespread flooding throughout Kenya displaced up to 60,000
people. Table 1 shows the severity of the problem in East Africa due to flooding in 2006
which reportedly claimed the lives of 1,000 people and displaced another 150,000 people.

The initial focus area of this project was to implement flood early warning information
for Nzoia, a sub-basin of the Lake Victoria region because of its territorial, geographic, and
epidemiological importance for the region. The Nzoia River sub-basin, lying in East
Africa, covers approximately 12,696 km2, and lies in the upstream of the Lake Victoria
basin and Nile River basin (Fig. 1). It is bounded by the latitudes: 34"–36"E, and longi-
tudes: 0"030–1"150 N, and the basin elevation ranges from 1,134 to 2,700 m. It
encompasses three geographical regions: the highlands around Mount Elgon and the
Cherangany Hills, the upper plateau, which includes Eldoret, and the lowlands. The region
receives an average of 1,350 mm of rain annually and is an important cereal and sugar-
cane-farming region of Kenya, producing at least 30% of the national output of both maize
and sugar. The total length of the river is 252 km with an average gradient of 4 m km-1.

2.2 Data used in this study

The key datasets enabling the development of a distributed hydrological model in
Africa include TMPA 3B42RT (Huffman et al. 2007; http://trmm.gsfc.nasa.gov), the
digital elevation data from SRTM (Rabus et al. 2003; http://www2.jpl.nasa.gov/srtm/),

Table 1 Estimated impact of
flooding in Kenya and East
Africa (Source: RCMRD)

Kenya
2006

East Africa
2006

Property loss ($ US) 250 million 400 million

Displaced persons 300,000 850,000

People needing emergency relief service 250,000 700,000

Deaths 260 1,000
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SRTM-derived hydrological parameter files of HydroSHEDS (Lehner et al. 2008), soil
parameters provided by the FAO 2003 (http://www.fao.org/AG/agl/agll/dsmw.htm), the
MODIS land classification map is used as a surrogate for land use/cover, with 17 classes of
land cover according to the International Geosphere–Biosphere Programme classification
(Friedl et al. 2002). Details of several key datasets used in the study are described below.

2.2.1 NASA TMPA

A recent development in precipitation estimation from space involves combination of
infrared measurements from geostationary satellites with passive microwave measurements
from polar-orbiting satellites. The TMPA 3B42RT product (Huffman et al. 2007) is a near-
real-time precipitation rate product at time and space scales (3-h, 0.25" 9 0.25" latitude–
longitude) over the latitude band 50" N–S. This product makes use of TRMM’s highest
quality observations, along with a high quality passive microwave-based rain estimates
from 3 to 7 polar-orbiting satellites (e.g., Advanced Microwave Scanning Radiometer
(AMSR-E), Special Sensor Microwave Imager from the Defense Satellite Meteorological
Program (SSMI/DMSP), and Advanced Microwave Sounding Unit (AMSU-A)), and all the
geosynchronous IR sensors (e.g., Meteorological Satellite (Meteosat), Geostationary
Operational Environmental Satellites (GOES), GMS (Geostationary Meteorological
Satellite)). The combined quasi-global rain map at 3-h resolution is produced by using
TRMM to calibrate, or adjust, the estimates from all the other satellites, and then combining

Fig. 1 Study area and gauge stations
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all the estimates into the TMPA final product. The technique uses as much microwave data
as possible, and uses the geo-IR estimates to fill in the gaps during the 3-h analysis. The
calibrations are computed using the latest monthly accumulations of matched geo-IR and
microwave data to ensure stability. The TMPA is a TRMM standard product. A real-time
version of the TMPA merged product was introduced in February 2002 and is available on
the U.S. TRMM web site (http://trmm.gsfc.nasa.gov).

2.2.2 NASA SRTM

The Earth’s topography is an essential constraint and boundary condition in various aspects
of Earth System Science researches from hydrological models predicting floods and runoff,
to atmospheric boundary layer friction theories. Conventional topographic mapping
technologies have produced maps of uneven quality—some with astounding accuracy,
some far less adequate because of the lack of universal datum (Farr et al. 2007). Digital
Elevation models (DEM), in the form of topographic maps, provide a base and context for
airborne navigation systems and for a range of field activities in the civilian and military
sectors. The Shuttle Radar Topography Mission (SRTM) is a joint collaboration between
NASA and the National Geospatial-Intelligence Agency. SRTM collected interferometric
radar data to generate a near-global topography data product. The Shuttle Radar Topog-
raphy Mission produced the most complete, the highest resolution (30-m) digital elevation
model of the Globe. It used dual radar antennas to acquire interferometric radar data,
processed to digital topographic data at 1 arc-second resolution. Please refer to Farr et al.
2007 for more details of the development, flight operations, data processing, and products
provided for users of this revolutionary dataset.

2.2.3 HydroSHEDS

HydroSHEDS is a new and innovative product that provides hydrographic information in a
consistent and comprehensive format for regional- and global-scale applications. It offers a
suite of geo-referenced datasets (vector and raster) at various scales, including river net-
works, watershed boundaries, drainage directions, and ancillary data layers such as flow
accumulations, distances, and river topology information. HydroSHEDS is based on high-
resolution elevation data obtained during a Space Shuttle flight for NASA’s SRTM at 3
arc-second resolution. The original SRTM data have been hydrologically conditioned
using a sequence of automated procedures (Lehner et al. 2008). The goal of developing
HydroSHEDS data bank is to generate key data layers to support regional and global
watershed analysis, hydrological modeling, and freshwater conservation planning at a
quality, resolution, and extent that had previously been unachievable. Available resolutions
range from 3 arc-second (approx. 90 m at the equator) to 5 min (approx. 10 km at the
equator) with seamless near-global extent. Quality assessments indicate that the accuracy
of HydroSHEDS significantly exceeds that of existing global watershed and river maps
(Lehner et al. 2008). HydroSHEDS has been developed by the Conservation Science
Program of World Wildlife Fund (WWF), in partnership with the U.S. Geological Survey
(USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conser-
vancy (TNC), and the Center for Environmental Systems Research (CESR) of the
University of Kassel, Germany. HydroSHEDS data are free for non-commercial use. More
information on HydroSHEDS and related data can be accessed by logging on to
http://www.worldwildlife.org/hydrosheds and http://hydrosheds.cr.usgs.gov.

Nat Hazards (2009) 50:109–123 113

123

http://trmm.gsfc.nasa.gov
http://www.worldwildlife.org/hydrosheds
http://hydrosheds.cr.usgs.gov


2.2.4 Ground observations and other datasets

Multi-year (2002 through 2006) daily observed precipitation of 12 gauges located within
the Nzoia basin and daily discharge at the basin outlet (shown in Fig. 1) are provided by
RCMRD. Daily historical meteorological data (e.g., daily maximum and minimum tem-
peratures, and mean wind speed) were downloaded from NOAA national data center
(NCDC climate data online. http://cdo.ncdc.noaa.gov/CDO/georegion) and were used to
estimate potential evapotranspiration. The MODIS land classification map is used as a
surrogate for land use/cover, with 17 classes of land cover according to the International
Geosphere–Biosphere Programme classification (Friedl et al. 2002). Soil information from
the Food and Agriculture Organization (FAO 2003, see http://www.fao.org/AG/agl/agll/
dsmw.htm), SRTM DEM, and flow direction of HydroSHEDS with 30 s spatial resolution
were used to extract catchment properties and hydrological routing parameters required by
distributed hydrological model.

2.3 A conceptual physical distributed hydrological model

Module-structured gridded Xinanjiang Model (Zhao and Liu 1995) is a conceptual,
physically based, distributed hydrological model. It was set up in the basin according to the
resolution of GTOPO30 DEM and coupled with a flow routing scheme with direction file
from HydroSHEDS. The model has been successfully and widely applied in humid and
semi-humid regions in China since its development in the 1970s (Zhao 1992). It has been
used for analyzing the impacts of climate change (Jiang et al. 2007) and other purposes
mainly for flood forecasting (Jayawardena and Zhou 2000). Its runoff generation method
has been used widely in distributed hydrological simulations recently (Li et al. 2006,
2008). Especially, its function to describe the soil moisture variation is employed in the
Variable Infiltration Capacity (VIC) model (Wood et al. 1992).

The structure and flow chart of the distributed model is shown in Fig. 2a. First, runoff of
each grid was calculated with runoff-generation module of Xinanjiang model. Then they
were concentrated to the outlet along the flow path with a runoff routing scheme according
to the concentration time and multi-linear reservoirs (Li et al. 2005).

Fig. 2 a The structure and flow chart of the distributed hydrological model. b Concentration time of each
grid in Nzoia basin
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2.3.1 Runoff generation

As shown in Fig. 2a, runoff generation module is run in each grid according to the balance
of precipitation and potential evapotranspiration (P-PET) at three soil layers (i.e., WU,
WL, and WD). The residual P-PET begins to infiltrate and generate surface runoff RS,
subsurface runoff RI, and groundwater RG. Then RI and RG will flow out and become QI
and QG via recession constants CI and CG. Finally, total runoff (QT) generated in the
surface of each grid is obtained by summing up QS, QG and QI, which ultimately
becoming the input for runoff routing module.

Potential evapotranspiration was calculated with simplified FAO Penman–Monteith
equation (Allen et al. 1998) with meteorological station observations of wind speed, mean,
maximal and minimal daily temperature, and station location (longitude, latitude and
altitude).

2.3.2 Runoff concentration

The runoff routing method was based on DEM and flow path of each grid which was
extracted from direction file of HydroSHEDS. The routing method includes two parts:
multi-linear reservoirs and concentration time. The time from each pixel to the outlet of the
basin was calculated using length and slope of the flow path. At the same time a series of
linear reservoirs were used to simulate the hydrograph from each grid to the next down-
stream grid. In the routing method, concentration time of each grid can be calculated with
following equations:

Ti ¼
Xni

j¼1

tj ð1Þ

tj ¼
lj
vj
¼ lj

KVSj
1
2

ð2Þ

where, Ti is the concentration time from center of the ith grid to the outlet; ni is the number
of grids passed through by flow of the ith grid from the center to the outlet, tj is the time of
flow from center of the jth grid to the next downriver grid center, lj is the surface distance
from center of the jth grid to the next downstream grid center; vj is the average flow
velocity from center of the jth grid to the next downstream grid center, Sj is the slope from
center of the jth grid to the next downriver grid center, and Kv is defined as the velocity
constant, implying the effect of hydraulic factors, such as roughness and hydraulic radius,
on flow velocity. And the effect of roughness is more apparent than others (Li et al. 2005).
The larger roughness results in smaller velocity constant. Figure 2b shows an example for
concentration time distribution of each grid in Nzoia basin.

3 Precipitation comparison

3.1 Validation indices

Widely used validation statistical indices were selected for the evaluation of TMPA
3B42RT precipitation estimates against the gauged rainfall observations. Relative bias
(Bias) was used to assess the systematic bias of satellite precipitation. The mean absolute
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error (MAE) measured the average magnitude of the error. The RMSE also measures the
average error magnitude but gives greater weight to the larger errors. The correlation
coefficient (CC) is used to assess the agreement between TRMM precipitation and gauged
observations.
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where P
_

is the precipitation estimation (e.g., TMPA 3B42RT) and P is the gauge obser-
vations;

!
P
_

and !P are the mean of gauge and TRMM precipitation, respectively.
Several categorical verification statistics, which measure the correspondence between

the estimated and observed occurrence of events, are also used in this study. They are
probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI).

POD ¼ hits

hitsþmisses
ð7Þ

FAR ¼ false alarms

hitsþ false alarms
ð8Þ

CSI ¼ hits

hitsþmissesþ false alarms
ð9Þ

where ‘‘misses’’ means the number of sampling times that gauge classifies as rain but the
TMPA 3B42RT algorithm shows no rain, ‘‘hits’’ indicate both the algorithm and gage
detect rainfall events, and false alarms means the algorithm show raining signals but rain
did not occur according to the gages. POD measures the fraction of observed events that
were correctly diagnosed, and is sometimes called the ‘‘hit rate’’. FAR gives the fraction of
diagnosed events that were actually nonevents. CSI gives the overall fraction of correctly
diagnosed events by the TMPA 3B42RT algorithm. Perfect values for these scores are
POD = 1, FAR = 0, and CSI = 1.

3.2 Evaluation of precipitation validation results and discussion

Point-based and areal-based daily rainfall data were computed from the 3B42 RT and
gauge observations over the time span of 2002–2006, respectively. Point-based time series
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were simply compared with the spatiotemporally co-located gauges and TMPA’s grids
while the areal-based basin time series were averaged over an entire basin.

Validation results shown in Table 2 and Fig. 3 indicate that the point-based (areal-
based) TMPA 3B42RT time series systematically overestimate 22% (15%) with 0.51
(0.57) ‘‘goodness of fit’’ at daily scale. By plotting the rainfall occurrence as a function of
rain intensity, Fig. 3 indicates the overestimation, i.e., positive bias, mostly occur at
rainfall intensity less than 1 mm/d or higher than 10 mm/d while underestimation has
occurred in between the given range. The results also imply that the areal-based average
method effectively reduces the Bias, MAE, RMSE, among other indicators. As a matter of
fact, the FAR rather becomes worse, increasing from 0.136 to 0.188, because of the fact
that averaging the 3B42RT data from points to area amplifies the local grid-based FAR to
the basin-wide FAR.

Table 2 Statistics of point and areal-based basin-mean 3B42RT’s precipitation

Statistics Mean Bias (%) CC MAE RMSE POD FAR CSI

Gage 3B42RT

Point-average 3.94 4.82 22.49 0.51 3.70 6.24 0.953 0.136 0.82

Areal-average 3.12 3.59 15.06 0.57 2.80 4.82 0.996 0.188 0.89

(a) (b)

(c) (d)

Gauged=3.94mm/d 
Bias = 22.49 % 

MAE = 3.70 mm/d 
RMSE = 6.20 mm/d 

CC = 0.51 

Gauged=3.52mm/d 
Bias = 15.06 % 

MAE = 2.80 mm/d 
RMSE = 4.82 mm/d 

CC = 0.47 

Fig. 3 Temporal evaluation of 3B42RT’s data. a Scatter plots of areal-based gauge’s and 3B42RT’s daily
precipitation data. b Rainfall occurrence of areal-based gauge observation and 3B42RT as a function of
rainfall intensity, respectively. c Scatter plots of point-based gauge’s and 3B42RT’s daily precipitation data.
d Rainfall occurrence of point-based gauge observation and 3B42RT as a function of rainfall intensity,
respectively
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Spatially, Fig. 4a shows lower basin receives heavier rainfall than upper basin
according to the 6-year gauge-averaged rainfall (2002–2006). In general, the 3B42RT data
follow the similar spatial distribution patterns with slight overestimation over downstream
and underestimation over upper stream (figure not shown here). 3B42RT’s data with
different aggregation time step was also compared with gauged observation in order to
evaluate the change of its estimation performance as a function of time scale (shown in
Fig. 4b). When aggregating the data from 1-day to 5-day scale, dramatic improvements of
the categorical verification indices can be seen: CSI, from 0.81 to 0.96 and reduction of
FAR from 0.188 to 0.05 (Fig. 4b).

Evaluation of the 6-year TMPA 3B42RT daily rainfall data against gauge observations
indicates that the 3B42RT has potential for hydrological modeling in this area, with good
correlation coefficients and very good skill scores given its high POD, CSI and small FAR.
However, though 15–20% bias ratio may be acceptable for hydrological modeling in lower
medium basins, it also prompted us to implement an additional simulation scheme at next
section: to calibrate the hydrological model with gauge rainfall data and then simulate the
discharges with systematically bias-removed 3B42RT, i.e., 3B42V6 (Huffman et al. 2007).

4 Hydrological model calibration and prediction

4.1 Calibration and evaluation criteria of hydrological model performance

Quantitative comparison was done between predicted and observed flows. We used two
most-popular statistical indices to assess the hydrological model performance. First, relative
bias ratio was calculated according to Eq. 3 between observed and modeled streamflows.
Second, for statistical ‘‘goodness of fit’’ of simulated flows, we used a widely used per-
formance indicator—the Nash-Sutcliffe Coefficient of Efficiency (NSCE). The NSCE is an
indicator of the model’s ability to predict about the 1:1 line. The NSCE is defined as:

NSCE ¼
P

ðQi;o % Q0Þ2 %
P

ðQi;o % Qi;cÞ2P
ðQi;o % Q0Þ2

ð10Þ

where Qi,o is the observed discharge of ith day; Qi,c is the simulated discharge of ith day;
Q0 is average value of all the daily observed discharge; and Qc is the average value of all
daily simulated discharge.
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Fig. 4 a Spatial distribution of daily gauge rainfall data derived from 2002 to 2006. b Change of
verification statistics as a function of time scales

118 Nat Hazards (2009) 50:109–123

123



Two interrelated procedures are involved in the model calibration. First, reduction of
Bias is looked as the main objective to calibrate runoff-generation parameters, such as the
ratio of actual ET to PET and water capacity of the three soil layers, in order to best match
the total runoff volume generated by the model to the observations. Meanwhile,
improvement of the NSCE is deemed as the objective to calibrate runoff-routing param-
eters such as concentration time and coefficient of linear reservoir in order to adjust the
routed hydrograph to best match with the discharge observations. The ideal scenario is
when Bias = 0 and NSCE = 1.

4.2 Calibration and simulation results

Initially, the Xinanjiang model parameters were estimated using digital datasets of soil,
MODIS land cover types, SRTM elevation, and HydroSHEDS. Afterward, we went
through two phases of model set-up: (1) 1985–2001 hydrological model warming up period
and (2) 2002–2006 hydrological model calibration and verification.

4.2.1 Model warming up

As the observed gauge rainfall and discharges data are available since 1985, we first
calibrated the model with the data from 1985 to 2001 for warming up rather than using
TMPA 3B42RT data which are available only after 2001. Figure 5a shows calibrated
runoff slightly underestimated (-5.2%) with relatively good NSCE (0.73). The 17-year
averaged daily discharge is 108.6 (m3/s) from station observations and 102.9 (m3/s) from
the calibrated model calculation, respectively. However, Table 3 and Fig. 5b also indicate
that the warming-up calibration during the 1985–2001 period did not perform consistently
for the subsequent discharge prediction period (2002–2006) that was forced by 3B42RT
rainfall, resulting in a relatively large bias = 26.6% and lower NSCE = 0.53.

4.2.2 Model calibration and simulation

Because TMPA 3B42RT rainfall data were only available after 2001, we implemented the
hydrological model for the period 2002–2006 during which both satellite and gage data are
available. After recalibration against gage rainfall for this period, we observed that the bias
ratio and NSCE score became 0.94% and 0.84, respectively (Fig. 6a). Afterward, the
calibrated hydrological model was forced by 3B42RT rainfall data and the results shown in
Fig. 6b over-predicted daily stream flows 20.4% but with promising NSCE score (0.67).
Based on the rainfall validation results from Table 2 in Sect. 3, it is shown that 3B42RT

Table 3 Summary of the calibration and overall results

Phases Calibration and results Prediction and results

Time span Forcing
rainfall

Bias
(%)

NSCE Time span Forcing data Bias
(%)

NSCE

Warming up 1985–2001 Gauge -5.20 0.73 2002–2006 3B42RT 26.6 0.53

Implementation 2002–2006 Gauge -0.94 0.84 2002–2006 3B42RT 20.37 0.67

2002–2006 Bias-
corrected

3B42RT

3.60 0.71
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generally over-estimated the rainfall 15–20%. Therefore, we further simulated the stream
flows forced by the bias-corrected 3B42RT, i.e., 3B42V6 (Huffman et al. 2007). This
reduced the overall bias of discharge prediction to 3.6% at the same time improving the
NSCE score to 0.71 (Table 3). Showing the accumulation of daily discharges from 2002
through 2006, Fig. 6c also demonstrates the improvement of NSCE and reduction of bias
with forcing data from bias-corrected 3B42RT over the original 3B42RT data.

5 Summary and discussion

Satellite-based rainfall and geospatial datasets are potentially useful for cost-effective
detection and early warning of natural hazards, such as floods, specifically for regions of
the world where local data are sparse or non-existent. Many researchers seek to take

Fig. 5 Hydrograph of daily stream flow for (a) warming up period (1985–2001) forced by gage rainfall and
(b) prediction period (2002–2006) forced by 3B42RT
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Fig. 6 Hydrological model calibration and simulation over period of 2002–2006. aModel calibration using
gage rainfall. b Model simulation using TMPA 3B42RT. c Accumulation of discharges data over the period
of 2002–2006
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advantage of the recently available and virtually uninterrupted supply of satellite-based
rainfall information as an alternative and supplement to the ground-based observation in
order to implement a cost-effective flood prediction in many under-gauged regions around
the world. The goal of this study is to build disaster management capacity in East Africa by
providing local governmental officials and international aid organizations a practical
decision-support tool so as to better asses emerging flood impacts and to quantify spatial
extent of water hazard risk, as well as to respond to such flood emergencies more
expediently.

In this study, the applicability of TMPA 3B42RT rainfall estimates for distributed
hydrological modeling over a flood-prone region, Nzoia, a sub-basin of Lake Victoria and
Nile River (Fig. 1) was evaluated. This research first validated the TMPA 3B42RT rainfall
products with gauged daily rainfall observations from the year 2002 through 2006
(Table 2; Figs. 3, 4). Afterward, a spatially distributed hydrological model was setup and
calibrated to Nzoia basin. The key datasets enabling the development of a distributed
hydrological model there include TMPA 3B42 Real-time rainfall estimates, the digital
elevation data from the NASA SRTM mission, hydrological parameter files of Hydro-
SHEDS, the MODIS Land cover, and soil information provided by FAO. Then benchmark
streamflow simulation performance was produced by the calibrated hydrological model
using the rain gauge and observed streamflow data provided by African RCMRD, local
partner of this project. Finally, continuous discharges forced by TMPA Real-time data
from 2002 through 2006 were simulated and reasonable results were obtained in com-
parison with the benchmark performance according to the designated statistical indices
such as bias ratio and NSCE. Figures 5 and 6 and Table 3 summarize the overall per-
formance of the model calibration and prediction results. In general, the results
demonstrate that the TMPA 3b42RT precipitation data for flood prediction in this basin is
acceptable, although the 7-year (1985–2001) gauged-rainfall warming-up does not appear
to yield greater benefit for consequent discharge modeling forced by 3B42RT at later time
period in terms of relatively high bias ratio (26.6%) and low NSCE score (0.53). During the
implementation time period (2002–2006), both gage calibration and 3B42RT simulation
show good results. Moreover, we also identified that improved flood prediction perfor-
mance could be achieved with systematically bias-corrected TMPA 3B42RT rainfall data
over original real-time data.

Although the results justify to suggest to us that TMPA 3B42RT can be acceptably used
to drive hydrological models for flood prediction purpose in Nzoia basin, full realization of
the potential of seamless satellite-based rainfall estimates requires further investigation of
optimal calibration strategy for integrating remote sensing data into a real-time hydro-
logical modeling system for vast ungauged regions of the world (Hossain and Lettenmaier
2006). On the other hand, results of this study also demand continuous progress in
spaceborne rainfall estimation technology in terms of both the accuracy and spatiotemporal
resolutions of rainfall estimates. In this regard, future deployment of the Global Precipi-
tation Measuring mission (http://gpm.gsfc.nasa.gov) would largely facilitate this particular
study. Finally, it can also be concluded that to increase flood forecasting lead time, more
reliable and more accurate short- or medium-range quantitative precipitation forecasts is a
must.
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